By Topic

Minimum Size and Maximum Packing Density of Nonredundant Semiconductor Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wallmark, J.T. ; RCA Laboratories, Princeton, N.J. ; Marcus, S.M.

It is shown that there exists an absolute lower limit to device size and an absolute upper limit to packing density of nonredundant semiconductor devices, whether integrated or nonintegrated, based on fundamental physical phenomena such as statistical variations in impurity distribution, maximum resolution of semiconductor fabrication methods, power density and influence of cosmic rays. The influence of these phenomena falls in two categories, namely failures that appear during the fabrication of the devices (impurity distribution, dividing operation) and failures that appear during use. The latter may be temporary failures (cosmic ray ionization, carrier fluctuations) or permanent failures (atomic displacements by cosmic rays, heat generation). For a medium size computer (105 components) with a reasonable life expectancy (1 month mean time between failures), the minimum device size under reasonable conditions is approximately (10¿)3, which is not far from devices now in the planning stage and within reach with eidsting techniques. It is within a factor of 2-5 of the dimensions of the active region of many devices of today. As microminiaturization by mere reduction in size appears headed for a not too distant limit it appears necessary from a device point of view to consider remedies which also have been suggested from a system point of view, namely redundancy, self-organizing systems, negative feedback, etc.

Published in:

Proceedings of the IRE  (Volume:50 ,  Issue: 3 )