Cart (Loading....) | Create Account
Close category search window
 

Deterministic High-Impedance Fault Detection and Phase Selection on Ungrounded Distribution Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daqing Hou ; Schweitzer Eng. Lab., Pullman, WA ; Fischer, N.

Downed conductors, tree branches touching conductors, and failing insulators often cause high-impedance faults in overhead distribution systems. The fault currents of these faults are much smaller than detection thresholds of traditional ground fault detection devices, so reliable detection of these high-impedance faults is challenging. Although fault currents can be much smaller in ungrounded systems than fault currents in multi-grounded systems given similar fault conditions, fault detection for ungrounded systems is nevertheless easier. This paper contrasts the differences between high-impedance fault detections for ungrounded and multigrounded systems. The paper explains fault detection of ungrounded distribution systems and the issue of fault detection sensitivity. The paper also introduces a recent advance in faulted phase selection on these ungrounded systems and demonstrates this advance through a staged fault test example from a utility

Published in:

Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006. PS '06

Date of Conference:

14-17 March 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.