Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Kernel-based Algorithms and Visualization for Interval Data Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thanh-Nghi Do ; Coll. of Inf. Technol., Can Tho Univ., CanTho ; Poulet, F.

Our investigation aims at extending kernel methods to interval data mining and using graphical methods to explain the obtained results. Interval data type can be a good way to aggregate large datasets into smaller ones or to represent data with uncertainty. No algorithmic changes are required from the usual case of continuous data other than the modification of the radial basis kernel function evaluation. Thus, kernel-based algorithms can deal easily with interval data. The numerical test results with real and artificial datasets show that the proposed methods have given promising performance. We also use interactive graphical decision tree algorithms and visualization techniques to give an insight into support vector machines results. The user has a better understanding of the models' behaviour

Published in:

Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on

Date of Conference:

Dec. 2006