By Topic

Modeling Multiple Time Units Delayed Gene Regulatory Network Using Dynamic Bayesian Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhengzheng Xing ; Sch. of Comput. Sci., Windsor Univ., Ont. ; Dan Wu

Most of the current applications which use dynamic Bayesian network to model gene regulatory network assume that the time delay between regulators and their targets is one time unit in a time series gene expression dataset. In fact, multiple time units delay is indicated to exist in a gene regulation process. In this paper, we propose using higher-order Markov dynamic Bayesian network (DBN) to model multiple time units delayed gene regulatory network. A two steps heuristic learning framework is designed to learn higher-order Markov DBN from time series gene expression data. We apply the learning framework to a yeast cell cycle gene expression dataset. The predicted gene regulatory network is strongly supported by biological evidence and consistent with the yeast cell cycle phase information

Published in:

Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on

Date of Conference:

Dec. 2006