By Topic

Femtosecond optical nonlinearities of CdSe quantum dots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
N. Peyghambarian ; Opt. Sci. Center, Arizona Univ., Tucson, AZ, USA ; B. Fluegel ; D. Hulin ; A. Migus
more authors

Femtosecond differential absorption measurements of the quantum-confined transitions in CdSe microcrystallites are reported. Spectral hole burning is observed, which is accompanied by an induced absorption feature on the high-energy side. The spectral position of the burned hole depends on the excitation wavelength. For excitation on the low-energy side of the lowest quantum-confined transition, a slight shift of the hole towards the line center is observed. The hole width increases with pump intensity and the magnitude of the induced transparency saturates at the highest excitation level. The results are consistently explained by bleaching of one-pair states and induced absorption caused by the photoexcited two electron-hole pair states. It is concluded that the presence of one electron in the excited state prevents further absorption of photons at the pair-transition energy and accounts for the major portion of the bleaching of the transition

Published in:

IEEE Journal of Quantum Electronics  (Volume:25 ,  Issue: 12 )