Cart (Loading....) | Create Account
Close category search window
 

Block-Based Methods for the Reconstruction of Finite-Length Signals From Nonuniform Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tuncer, T.E. ; Electr. & Electron. Eng. Dept., Middle East Tech. Univ., Ankara

Two novel block-based algorithms are presented for the reconstruction of uniform samples given the nonuniform samples. The first algorithm uses a sinc interpolator whereas the second one uses a DFT-based interpolator. It is shown that the proposed algorithms are stable and the error due to noise and sampling jitter is bounded by the corresponding error norms of noise and jitter, respectively. We show that both of the block-based algorithms provide nearly perfect reconstruction for a class of practically time and bandlimited signals. Boundary effects are considered and single and multiblock processing is discussed. A modified block-based algorithm is developed by using the windowing technique in order to improve the mean-squared error (MSE) performance for nonbandlimited signals. It is shown that this algorithm performs better than a group of alternative algorithms, including Yen's third algorithm, for a variety of signal, noise, and sampling grids

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 2 )

Date of Publication:

Feb. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.