Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Ergodic Properties for Multirate Linear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marelli, D. ; Sch. of Electr. Eng. & Comput. Sci., Newcastle Univ., NSW ; Minyue Fu

Stochastic analysis of a multirate linear system typically requires the signals in the system to possess certain ergodic properties. Among them, ergodicity in the mean and ergodicity in the correlation are the most commonly used ones. We show that multirate operations and time-variant linear filtering can destroy these ergodic properties. Motivated by this fact, we introduce the notions of strong ergodicity in the mean and strong ergodicity in the correlation. We show that these properties are preserved under a number of operations, namely, downsampling, upsampling, addition, and uniformly stable linear (time-variant) filtering. We also show that white random processes with uniformly bounded second moments are strongly ergodic in the mean and that mutually independent random processes with uniformly bounded fourth moments are jointly strongly ergodic in the correlation. The main implication of these results is that if a multirate linear system is driven by white (independent) random processes with uniformly bounded second (fourth) moments, then every signal in the system is strongly ergodic in the mean (correlation) and therefore ergodic in the mean (correlation). An application of these results is also discussed

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 2 )