Cart (Loading....) | Create Account
Close category search window
 

Performance of Belief Propagation for Decoding LDPC Codes in the Presence of Channel Estimation Error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saeedi, H. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, Ont. ; Banihashemi, A.H.

In this paper, we investigate the performance of the belief propagation (BP) algorithm for decoding low-density parity-check codes over the additive white Gaussian noise channel when there is an incorrect estimate of the channel signal-to-noise ratio (SNR) (referred to as "SNR mismatch") at the decoder. At the extremes for over- and underestimation of SNR, the performance of BP tends to that of min-sum algorithm and the channel bit-error rate, respectively. Our results for regular codes indicate that the sensitivity to mismatch increases by increasing the variable-node degree and by decreasing the check-node degree. The effect of variable-node degree, however, appears to be more profound, such that at a given rate, the codes with the smallest variable and check degrees are more robust against SNR mismatch. For irregular codes, by comparing the thresholds of a few ensembles, we demonstrate that the ensemble which performs better in the absence of mismatch can perform worse in the presence of it. To obtain our asymptotic results, we propose a computationally efficient method based on the Gaussian approximation of density evolution in the presence of SNR mismatch. We also show that the asymptotic results are consistent with simulation results for codes with finite block lengths

Published in:

Communications, IEEE Transactions on  (Volume:55 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.