By Topic

Design of 1-D Stable Variable Fractional Delay IIR Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hui Zhao ; Sch. of Autom. Eng., Univ. of Electron. Sci. & Technol., Sichuan ; Hon Keung Kwan

In this brief, a two-stage approach for the design of 1-D stable variable fractional delay infinite-impulse response (IIR) digital filters is proposed. In the first stage, a set of fixed delay stable IIR filters are designed by minimizing a quadratic objective function, which is defined by integrating error criterion with IIR filter stability constraint condition. Then, the final design is determined by fitting each of the fixed delay filter coefficients as a 1-D polynomial. Two design examples are given to show the effectiveness of the proposed design method

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:54 ,  Issue: 1 )