By Topic

Ultra-High-Voltage Charge Pump Circuit in Low-Voltage Bulk CMOS Processes With Polysilicon Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Dou Ker ; Inst. of Electron., Nat. Chiao Tung Univ., Hsinchu ; Shih-Lun Chen

An on-chip ultra-high-voltage charge pump circuit realized with the polysilicon diodes in the low-voltage bulk CMOS process is proposed in this work. Because the polysilicon diodes are fully isolated from the silicon substrate, the output voltage of the charge pump circuit is not limited by the junction breakdown voltage of MOSFETs. The polysilicon diodes can be implemented in the standard CMOS processes without extra process steps. The proposed ultra-high-voltage charge pump circuit has been fabricated in a 0.25-mum 2.5-V standard CMOS process. The output voltage of the four-stage charge pump circuit with 2.5-V power-supply voltage (VDD=2.5 V) can be pumped up to 28.08 V, which is much higher than the n-well/p-substrate breakdown voltage (~18.9 V) in a 0.25-mum 2.5-V bulk CMOS process

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:54 ,  Issue: 1 )