By Topic

Phase Correlation and Linewidth Reduction of 40 GHz Self-Pulsation in Distributed Bragg Reflector Semiconductor Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Renaudier, J. ; Alcatel Thales III-V Lab., Palaiseau ; Guang-Hua Duan ; Landais, P. ; Gallion, P.

In this paper, self-pulsation (SP) in a distributed Bragg reflector (DBR) semiconductor laser without a saturable absorber is experimentally and theoretically investigated. Detailed experimental characterizations of the SP DBR laser are reported in the optical and radio-frequency domains. Phase correlation between the longitudinal modes selected by the DBR mirror has been experimentally demonstrated. A theoretical model based on coupled rate equations for three modes has been developed to study the time evolution of phases and amplitudes of the modes. The carrier density modulation, resulting from the beating between adjacent longitudinal modes generates four-wave mixing (FWM) and is responsible for mutual injection locking, leading to passive mode-locking. The calculated power spectral density of the frequency noise derived from the model is in agreement with experimental results and proves that the phases of the longitudinal modes are identically correlated through the FWM process in this type of SP lasers

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 2 )