Cart (Loading....) | Create Account
Close category search window
 

Accurate Magnified Near-Field Measurement of Optical Waveguides Using a Calibrated CCD Camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fatadin, I. ; Photonics Group, Nat. Phys. Lab., Teddington ; Ives, D. ; Wicks, M.

A fast and accurate magnified near-field (NF) measurement technique that employs a charge-coupled device (CCD) camera is described to measure the two-dimensional (2-D) intensity distributions of optical waveguides with arbitrary refractive-index profiles. Calibration of the InGaAs CCD camera used in the system is essential in terms of correction for bad pixels, linearity, and uniformity in order to obtain accurate results. The magnification factor of the system is obtained using a calibrated optical dimensional standard. The NF measurement system with the calibrated CCD camera is validated from the mode field diameter (MFD) measured for six single-mode fibers with different refractive-index profiles. The MFD results from the magnified NF technique exhibit good agreement with those obtained from the far-field scanning technique to within 2.3%. An error of about 15% in the MFD would result if corrections to the CCD camera were not applied to the raw measured data. The refractive-index profiles computed from the measured data for a single-mode fiber and a Ti:LiNbO3 waveguide are also presented. The radial-index profile of the fiber exhibits good agreement with the profile measured from the refracted NF technique

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 12 )

Date of Publication:

Dec. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.