Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Fast Distortion Measurement Using Chord-Length Parameterization Within the Vertex-Based Rate-Distortion Optimal Shape Coding Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sohel, F.A. ; Gippsland Sch. of Inf. Technol., Monash Univ., Clayton, Vic. ; Karmakar, G.C. ; Dooley, L.S.

Existing vertex-based operational rate-distortion (ORD) optimal shape coding algorithms can use a number of different distortion measurement techniques, including the shortest absolute distance (SAD), the distortion band (DB), the tolerance band (TB), and the accurate distortion measurement technique for shape coding (ADMSC). From a computational time perspective, an N-point contour requires O(N2 ) time for DB and TB for both polygon and B-spline-based encoding, while SAD and ADMSC incur O(N) time for polygonal encoding but O(N2 ) for B-spline based encoding, thereby rendering the ORD optimal algorithms computationally inefficient. This letter presents a novel distortion measurement strategy based on chord-length parameterization (DMCLP) of a boundary that incurs order O(N) complexity for both polygon and B-spline-based encoding while preserving a comparable rate-distortion performance to the original ORD optimal shape coding algorithms

Published in:

Signal Processing Letters, IEEE  (Volume:14 ,  Issue: 2 )