Cart (Loading....) | Create Account
Close category search window
 

DFT Modeling of Bulk-Modulated Carbon Nanotube Field-Effect Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Latessa, L. ; Dept. of Electron. Eng., Tor Vergata Univ., Rome ; Pecchia, A. ; Di Carlo, Aldo

We report density-functional theory (DFT) atomistic simulations of the nonequilibrium transport properties of carbon nanotube (CNT) field-effect transistors (FETs). Results have been obtained within a self-consistent approach based on the nonequilibrium Green's functions (NEGF) scheme. We show that, as the current modulation mechanism is based on the local screening properties of the nanotube channel, a completely new, negative quantum capacitance regime can be entered by the device. We show how a well-tempered device design can be accomplished in this regime by choosing suitable doping profiles and gate contact parameters. At the same time, we detail the fundamental physical mechanisms underlying the bulk-switching operation, including them in a very practical and accurate model, whose parameters can be easily controlled in order to improve the device performance. The dependence of the nanotube screening properties on the temperature is finally explained by means of a self-consistent temperature analysis

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.