Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Monte Carlo Simulations of High-Performance Implant Free In0.3Ga 0.7As Nano-MOSFETs for Low-Power CMOS Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kalna, K. ; Nanoelectron. Res. Centre, Glasgow Univ. ; Wilson, J.A. ; Moran, D.A.J. ; Hill, R.J.W.
more authors

The potential performance of implant free heterostructure In0.3Ga0.7As channel MOSFETs with gate lengths of 30, 20, and 15 nm is investigated using state-of-the-art Monte Carlo (MC) device simulations. The simulations are carefully calibrated against the electron mobility and sheet density measured on fabricated III-V MOSFET structures with a high-kappa dielectric. The MC simulations show that the 30 nm gate length implant free MOSFET can deliver a drive current of 2174 muA/mum at 0.7 V supply voltage. The drive current increases to 2542 muA/mum in the 20 nm gate length device, saturating at 2535 muA/mum in the 15 nm gate length one. When quantum confinement corrections are included into MC simulations, they have a negligible effect on the drive current in the 30 and 20 nm gate length transistors but lower the 15 nm gate length device drive current at 0.7 V supply voltage by 10%. When compared to equivalent Si based MOSFETs, the implant free heterostructure MOSFETs can deliver a very high performance at low supply voltage, making them suitable for low-power high-performance CMOS applications

Published in:

Nanotechnology, IEEE Transactions on  (Volume:6 ,  Issue: 1 )