By Topic

Feasibility of Retrieving Land-Surface Temperature From ASTER TIR Bands Using Two-Channel Algorithms: A Case Study of Agricultural Areas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Juan C. Jimenez-Munoz ; Dept. of Earth, Phys., & 'Ibermodynamics, Valencia Univ. ; Jos A. Sobrino

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) provides the user community with standard products of land-surface temperature (LST) and emissivity using the temperature and emissivity separation (TES) algorithm. This letter analyzes the feasibility of using two-channel (TC) algorithms for LST retrieval from ASTER data, which could be considered as an alternative or complementary procedure to the TES algorithm. TC algorithms have been developed for all the ASTER thermal infrared bands combinations, and they have been applied to six ASTER images acquired over an agricultural area of Spain in 2000, 2001, and 2004. LST values obtained with TC algorithms were compared with the TES product. In addition, the TC algorithms were tested using simulated data and ground-based measurements collected coincident with the ASTER acquisition in 2004. The results show that TC algorithms provide similar accuracies than the TES algorithm (~1.5 K), with the main advantage that the atmospheric correction is included in the algorithm itself

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:4 ,  Issue: 1 )