Cart (Loading....) | Create Account
Close category search window
 

Generation of ultrashort pulses from a neodymium glass laser system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan, L. ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; Ho, P.-T. ; Lee, Chi H. ; Burdge, G.L.

A neodymium glass laser system capable of generating high-energy, ultrashort pulses at a convenient repetition rate is described. The effect of nonlinear frequency pulling on active mode locking is discussed. By minimizing the nonlinear frequency pulling, it is possible to routinely generate stable ~10-ps pulses at a 100-MHz repetition rate from the actively mode-locked oscillator. The regenerator amplifier increases the oscillator pulse energy to over 30 μJ at a 370-Hz repetition rate. Using intracavity self-phase modulation, the regenerative amplifier also broadens the pulse bandwidth to ~35 Å. By subsequent pulse compression while maintaining high energy, it is possible to produce 0.55-ps pulses with >10 μJ. An optical fiber pulse compressor further shortens the pulses to 30 fs (30 nJ), the shortest pulses ever generated at 1.054 μm from a neodymium laser system

Published in:

Quantum Electronics, IEEE Journal of  (Volume:25 ,  Issue: 12 )

Date of Publication:

Dec 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.