By Topic

GroCoca: group-based peer-to-peer cooperative caching in mobile environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi-Yin Chow ; Dept. of Comput. Sci. & Eng., Minnesota Univ., Minneapolis, MN ; Leong, H.V. ; Chan, A.T.S

In a mobile cooperative caching environment, we observe the need for cooperating peers to cache useful data items together, so as to improve cache hit from peers. This could be achieved by capturing the data requirement of individual peers in conjunction with their mobility pattern, for which we realized via a GROup-based COoperative CAching scheme (GroCoca). In GroCoca, we define a tightly-coupled group (TCG) as a collection of peers that possess similar mobility pattern and display similar data affinity. A family of algorithms is proposed to discover and maintain all TCGs dynamically. Furthermore, two cooperative cache management protocols, namely, cooperative cache admission control and replacement, are designed to control data replicas and improve data accessibility in TCGs. A cache signature scheme is also adopted in GroCoca in order to provide information for the mobile clients to determine whether their TCG members are likely caching their desired data items and to perform cooperative cache replacement Experimental results show that GroCoca outperforms the conventional caching scheme and standard COoperative CAching scheme (COCA) in terms of access latency and global cache hit ratio. However, GroCoca generally incurs higher power consumption.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 1 )