By Topic

Adaptive energy conserving algorithms for neighbor discovery in opportunistic Bluetooth networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Drula, C. ; Dept. of Comput. Sci., Toronto Univ., Ont. ; Amza, C. ; Rousseau, F. ; Duda, A.

In this paper, we introduce and evaluate novel adaptive schemes for neighbor discovery in Bluetooth-enabled ad-hoc networks. In an ad-hoc peer-to-peer setting, neighbor search is a continuous, hence battery draining process. In order to save energy when the device is unlikely to encounter a neighbor, we adaptively choose parameter settings depending on a mobility context to decrease the expected power consumption of Bluetooth-enabled devices. For this purpose, we first determine the mean discovery time and power consumption values for In different Bluetooth parameter settings through a comprehensive exploration of the parameter space by means of simulation validated by experiments on real devices. The fastest average discovery time obtained is 0.2 s, while at an average discovery time of I s the power consumption is just 1.5 times that of the idle mode on our devices. We then introduce two adaptive algorithms for dynamically adjusting the Bluetooth parameters based on past perceived activity in the ad-hoc network. Both adaptive schemes for selecting the discovery mode are based only on locally-available information. We evaluate these algorithms in a node mobility simulation. Our adaptive algorithms reduce energy consumption by 50% and have up to 8% better performance over a static power-con serving scheme

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 1 )