By Topic

Efficient lookup on unstructured topologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Morselli, Ruggero ; Dept. of Comput. Sci., Maryland Univ., College Park, MD ; Bhattacharjee, B. ; Marsh, M.A. ; Srinivasan, A.

We present LMS, a protocol for efficient lookup on unstructured networks. Our protocol uses a virtual namespace without imposing specific topologies. It is more efficient than existing lookup protocols for unstructured networks, and thus is an attractive alternative for applications in which the topology cannot be structured as a Distributed Hash Table (DHT). We present analytic bounds for the worst-case performance of LMS. Through detailed simulations (with up to 100,000 nodes), we show that the actual performance on realistic topologies is significantly better. We also show in both simulations and a complete implementation (which includes over five hundred nodes) that our protocol is inherently robust against multiple node failures and can adapt its replication strategy to optimize searches according to a specific heuristic. Moreover, the simulation demonstrates the resilience of LMS to high node turnover rates, and that it can easily adapt to orders of magnitude changes in network size. The overhead incurred by LMS is small, and its performance approaches that of DHTs on networks of similar size

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:25 ,  Issue: 1 )