By Topic

A Self-Adaptable Method to Optimize the Performance of Frequency-To-Code Conversion Based Measurement Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. M. Dias Pereira ; Escola Superior de Tecnologia, Instituto Politécnico de Setúbal, Portugal,; Instituto de Telecomunicações, DEEC, IS T, Lisboa, Portugal ; O. Postolache ; P. Silva Girao

Accuracy, error compensation and simplicity of transducer's communication and interfacing are three important topics in the design and development of any measurement system. Nowadays, there are a substantial number of transducers and actuators that generate or receive, respectively, frequency modulated signals. The main advantages associated with frequency transducers include its high noise immunity, high output signal power, wide dynamic range and simplicity of signal interfacing and coding [1-2]. The frequency-to-digital conversion (FDC) is easily performed by any microcontroller, or circuits based on commercial off-the- shelf (COTS) components, without need of an analog-to-digital converter (ADC), and the same easiness exists when frequency signals are required for actuators. Eliminating the need of ADCs and DACs reduces the cost of instrumentation and measurement systems and eliminates a large number of error sources associated with these conversion devices. This paper is dedicated to FDC based measurement systems, giving particular attention to calibration issues and self- adaptive measurement capabilities that can be used to select a suitable conversion accuracy for a given signal-to-noise ratio. Some simulation and experimental results for a temperature and humidity measurement system will be included as application examples.

Published in:

2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications

Date of Conference:

5-7 Sept. 2005