By Topic

Physical Model of Incomplete Ionization for Silicon Device Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schenk, A. ; Integrated Syst. Lab., ETH Zurich ; Altermatt, Pietro P. ; Schmithusen, B.

An empirical model of incomplete ionization (ii) in phosphorus-, arsenic-, and boron-doped crystalline silicon is derived from photoluminescence, conductance, and mobility measurements. It is found that up to 25% of phosphorus and boron atoms and up to 35% of arsenic atoms are non-ionized at room temperature near the Mott transition, whereas there is no significant amount of ii at dopant densities far above the Mott transition. Simplified equations of ii suitable for implementation in device simulators are exploited to study the effect of ii on the performance of bipolar and MOS devices. It is demonstrated that ii can increase the current gain of bipolar transistors by up to 25%

Published in:

Simulation of Semiconductor Processes and Devices, 2006 International Conference on

Date of Conference:

6-8 Sept. 2006