By Topic

Towards an EMG-Controlled Prosthetic Hand Using a 3-D Electromagnetic Positioning System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This paper proposes a novel method of using electromyographic (EMG) potentials generated by the forearm muscles during hand and finger movements to control an artificial prosthetic hand worn by an amputee. Surface EMG sensors were used to record a sequence of forearm EMG potential signals via a PC sound card and a novel 3-D electromagnetic positioning system together with a data-glove mounted with 11 miniature electromagnetic sensors used to acquire corresponding human hand pose in real time. The synchronized measurements of hand posture and associated EMG signals stored as prototypes embody a numerical expression of the current hand shape in the form of a series of data frames, each comprising a set of postures and associated EMG data. This allows a computer generated graphical 3-D model, combined with synthesized EMG signals, to be used to evaluate the approach. This graphical user interface could also enable handicapped users to practice controlling a robotic prosthetic hand using EMG signals derived from their forearm muscles. We believe this task might be made easier using a dictionary of stored task-specific prototype data frames acquired from able-bodied users. By comparing the resulting EMG data frames with stored prototypes, the most likely data frame sequence can be identified and used to control a robotic hand so that it carries out the user's desire. We explore the feasibility of this approach by applying frequency analysis on the signal derived from a multichannel EMG measurement device and identify pattern recognition techniques in the time and frequency domains to determine plausible hand shapes. This approach offers several advantages over existing methods. First, it simplifies the classification procedure, saving computational time and the requirement for the optimization process, and second, it increases the number of recognizable hand shapes, which in turn improves the dexterity of the prosthetic hand and the quality of life for amputees. The dat- - abase of EMG prototypes could be employed to optimize the accuracy of the system within a machine learning paradigm. By making a range of EMG prototype databases available, prosthetic hand users could train themselves to use their prosthesis using the visual reference afforded by the virtual hand model to provide feedback

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:56 ,  Issue: 1 )