By Topic

A Neuromorphic VLSI Model of Bat Interaural Level Difference Processing for Azimuthal Echolocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shi, R.Z. ; Inst. for Syst. Res., Maryland Univ., College Park, MD ; Horiuchi, T.K.

Bats use the unusual sensory modality of echolocation to fly in complete darkness with speed and agility through complex three-dimensional environments. Their small head size and the use of high-frequency sound make interaural level differences (ILDs) their primary cue for azimuthal echolocation. In this paper, we present a neuromorphic VLSI-based system that emulates the ILD processing in the bat brainstem and midbrain. By selecting simple neural units, we propose a circuit model that is mathematically tractable and captures the essential elements of bat ILD computation. The chip includes a three-layer network of spiking neurons with 32 neurons on each layer, and the address-event representation for external interface. Emphasizing the neural spike timing and population behavior, we hope this study will contribute to the bat research community in particular as well as neuroscience in general by providing a real-time, fine-grained, neuromorphic bat echolocation simulator that will be used to address system-level performance of low-level neural algorithms. By developing functional models of the bat echolocation system, we hope to emulate the efficient implementation demonstrated by nature

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:54 ,  Issue: 1 )