By Topic

Effective Image Retrieval Based on Hidden Concept Discovery in Image Database

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruofei Zhang ; Yahoo! Inc, Sunnyvale, CA ; Zhongfei Zhang

This paper addresses content-based image retrieval in general, and in particular, focuses on developing a hidden semantic concept discovery methodology to address effective semantics-intensive image retrieval. In our approach, each image in the database is segmented into regions associated with homogenous color, texture, and shape features. By exploiting regional statistical information in each image and employing a vector quantization method, a uniform and sparse region-based representation is achieved. With this representation, a probabilistic model based on statistical-hidden-class assumptions of the image database is obtained, to which the expectation-maximization technique is applied to analyze semantic concepts hidden in the database. An elaborated retrieval algorithm is designed to support the probabilistic model. The semantic similarity is measured through integrating the posterior probabilities of the transformed query image, as well as a constructed negative example, to the discovered semantic concepts. The proposed approach has a solid statistical foundation; the experimental evaluations on a database of 10 000 general-purposed images demonstrate its promise and effectiveness

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 2 )