System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Wiener Filter-Based Error Resilient Time-Domain Lapped Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jie Liang ; Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC ; Chengjie Tu ; Lu Gan ; Tran, T.D.
more authors

In this paper, the design of the error resilient time-domain lapped transform is formulated as a linear minimal mean-squared error problem. The optimal Wiener solution and several simplifications with different tradeoffs between complexity and performance are developed. We also prove the persymmetric structure of these Wiener filters. The existing mean reconstruction method is proven to be a special case of the proposed framework. Our method also includes as a special case the linear interpolation method used in DCT-based systems when there is no pre/postfiltering and when the quantization noise is ignored. The design criteria in our previous results are scrutinized and improved solutions are obtained. Various design examples and multiple description image coding experiments are reported to demonstrate the performance of the proposed method

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 2 )