By Topic

Optimal Nonholonomic Motion Planning of Space Robot System with Dual-Arms Based on Adaptive Genetic Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tang Xiaoteng ; Coll. of Mech. Eng., Fuzhou Univ., China ; Chen Li

In this paper, the optimal nonholonomic motion planning of free-floating space robot system with dual-arms is discussed. Base on the linear and angular momentum conservations of the system, the system state equations for control design are established, so the nonholonomic motion planning objective of attitude control of space robot system is translated as the solution of a canonical nonlinear control problem. The optimal control scheme of the system proposed is studied, and an adaptive genetic algorithm for computing approximate optimal control of the system proposed is developed. The optimal motion planning approach proposed above possesses the advantages that it can obtain the desired angles of the base's attitude and arms' joints only by controlling the arms' joints motion. A planar free-floating space robot system with dual-arms is simulated to verify the proposed approach.

Published in:

Control Conference, 2006. CCC 2006. Chinese

Date of Conference:

7-11 Aug. 2006