By Topic

Control Laws For The Tele Operation Of An Unmanned Aerial Vehicle Known As An X4-flyer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nicolas Guenard ; CEA, Fontenay-aux-roses, France. Email: ; Tarek Hamel ; Laurent Eck

In this paper, we present a control design for the teleoperation of a miniature unmanned aerial vehicle known as an X4-flyer. A simple dynamic nonlinear model for the vehicle, valid for quasi-stationary flight conditions, is derived as a basis for the control design. An attitude control based on information issued from an inertial measurement unit is designed. In order to control the vehicle altitude, an adaptive controller avoiding the ground effects and based on measurements issued from an ultrasonic low cost sensor is designed. In order to compute the altitude velocity, an estimator based on the proposed modelling is used. At the end of the paper, experimental results are presented

Published in:

2006 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

9-15 Oct. 2006