Cart (Loading....) | Create Account
Close category search window
 

High-speed visual robot control using an optimal linearizing intensity-based filtering approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Olsson, T. ; Dept. of Autom. Control, Lund Univ. ; Johansson, R. ; Robertsson, A.

Many contact operations in robotics require accurate positioning, which is made difficult by the presence of rapidly varying interaction forces and compliances in gear boxes and links. In order to compensate for such effects, rapid feedback from the measured tool position in several degrees of freedom is needed. This paper presents a dynamic visual tracking technique based directly on intensity measurements in the image, which can be used to obtain state estimates at a very high rate, and with very short input-output latency. Methods for analysis of the stability and sensitivity to disturbances are presented, and an improved version for better disturbance suppression of illumination variations and noise is developed. Positioning experiments using an industrial robot with camera feedback at 250 Hz are used to validate the approach

Published in:

Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on

Date of Conference:

9-15 Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.