By Topic

Hierarchical Motion Planning for Self-reconfigurable Modular Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bhat, P. ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA ; Kuffner, J. ; Goldstein, S. ; Srinivasa, S.

Motion planning for a self-reconfigurable robot involves coordinating the movement and connectivity of each of its homogeneous modules. Reconfiguration occurs when the shape of the robot changes from some initial configuration to a target configuration. Finding an optimal solution to reconfiguration problems involves searching the space of possible robot configurations. As this space grows exponentially with the number of modules, optimal planning becomes intractable. We propose a hierarchical planning approach that computes heuristic global reconfiguration strategies efficiently. Our approach consists of a base planner that computes an optimal solution for a few modules and a hierarchical planner that calls this base planner or reuses pre-computed plans at each level of the hierarchy to ultimately compute a global suboptimal solution. We present results from a prototype implementation of the method that efficiently plans for self-reconfigurable robots with several thousand modules. We also discuss tradeoffs and performance issues including scalability, heuristics and plan optimality

Published in:

Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on

Date of Conference:

Oct. 2006