Cart (Loading....) | Create Account
Close category search window
 

Urn Models and Beta-Splines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Goldman, R.N. ; Control Data Corporation

Splines were originally studied in approximation theory where the focus is on approximating explicit functions of the form y = f(x) or z = f(x,y). These splines were later adopted by mathematicians and computer sicentists for use in computer-aided geometric design (CAGD) where the emphasis was shifted to parametric curves and surfaces. Initially the continuity conditions for splines developed in approximation theory were retained in CAGD, but it was soon realized that the old constraints were unnecessarily restrictive in this new context and that they could be relaxed without losing the essential property of smoothness. Beta-splines were developed to take advantage of this new freedom by introducing shape parameters into the constraint equations. These parameters could then be manipulated by a designer to change the shape of a curve of surface in an intuitively meaningful and useful way. Another seemingly unrelated context in which shape parameters appear is in blending functions constructed from discrete urn models. The purpose of this article is to begin to unify these two independent approaches to shape parameters, and in the process apply the techniques of urn models to gain some insight into the properties of Beta-splines.

Published in:

Computer Graphics and Applications, IEEE  (Volume:6 ,  Issue: 2 )

Date of Publication:

Feb. 1986

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.