Cart (Loading....) | Create Account
Close category search window

A Probabilistic Approach to Classification of Transients in Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Safavian, L.S. ; Dept. of Electr. & Comput. Eng., Manitoba Univ., Winnipeg, Man. ; Kinsner, W. ; Turanli, H.

This paper presents an in-depth study of classification of transients in power systems using two pattern classification methods, namely the maximum-likelihood, and the probabilistic neural networks. These methods, which stem from the Bayes rule, aim at estimating the underlying probability density functions that are required by the Bayes rule, but are often unavailable readily. The paper presents the mathematical foundations of classification using these two methods, followed by their implementation for classification of three types of transients, namely three-phase faults, breaker operations and capacitor switchings. Features used in this study are obtained using the wavelet and multifractal analyses of transient waveforms

Published in:

Electrical and Computer Engineering, 2006. CCECE '06. Canadian Conference on

Date of Conference:

May 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.