By Topic

Corridor Line Detection for Vision Based Indoor Robot Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wenxia Shi ; Dept. of Electr. & Comput. Eng., Univ. of Western Ontario, London, Ont. ; Samarabandu, J.

The capability of a mobile robot to negotiate corridors is essential for autonomous navigation in an indoor environment. An approach is proposed for determining the corridor line locations and the vanishing point in a corridor environment using a single camera, based on hypotheses generation/verification and a feedback control strategy. A corridor line is the intersection line between a wall and the floor, which is, the farthest lateral position the autonomous robot can safely navigate in a corridor. There have been numerous approaches described in the literature which detect corridor edges and vanishing point; however, no solution has been reported to detect true corridor line locations in the presence of many spurious linear features around the corridor line. The proposed method consists of low, medium, and high level processing stages which correspond to the extraction of features, the formation of hypotheses, and the verification of hypotheses using a feedback mechanism, respectively. The system has been tested on a large number of real corridor images captured by a moving robot in a corridor. The experimental results demonstrated the reliability and robustness of the approach with respect to different viewpoints, reflection variations and different illumination conditions

Published in:

Electrical and Computer Engineering, 2006. CCECE '06. Canadian Conference on

Date of Conference:

May 2006