By Topic

Remote Electromagnetic Excitation of High-Q Silicon Resonator Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Frieder Lucklum ; Institute for Microelectronics, Johannes Kepler University Linz, A-4040 Linz, Austria. E-mail: frieder.lucklum@jku.at ; B. Jakoby ; P. Hauptmann ; N. f. De Rooij

The excitation of acoustic resonators is traditionally based on the piezoelectric effect. The alternative magnetic direct generation of acoustic waves is the basic operation principle of electromagnetic acoustic transducers (EMATs). For sensor applications this method can be applied to a mechanical resonator, thus enhancing the rather poor transduction efficiency by the high acoustic Q-factors. This principle has been theoretically investigated in FEM and PSpice simulations and practically applied to high-Q silicon membranes. The advantages of this non-piezoelectric sensor showing strong resonances with Q-factors up to 105 have been demonstrated. Sensor response to mass loading shows a Sauerbrey-like behavior suitable for sensing purposes

Published in:

2006 IEEE International Frequency Control Symposium and Exposition

Date of Conference:

4-7 June 2006