By Topic

A Human-Friendly MAS for Mining Stock Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiarui Ni ; Univ. of Technol., Sydney, NSW ; Zhang, C.

Mining stock data can be beneficial to the participants and researchers in the stock market. However, it is very difficult for a normal trader or researcher to apply data mining techniques to the data on his own due to the complexity involved in the whole data mining process. In this paper, we present a multi-agent system that can help users easily deal with their data mining jobs on stock data. This system guides users to specify their mining tasks by simply specifying the data sets to be mined and selecting pre-defined and/or user-added data mining agents. This approach offers normal traders a practical and flexible solution to mining stock data

Published in:

Web Intelligence and Intelligent Agent Technology Workshops, 2006. WI-IAT 2006 Workshops. 2006 IEEE/WIC/ACM International Conference on

Date of Conference:

Dec. 2006