By Topic

Resource Management for Networked Classifiers in Distributed Stream Mining Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Turaga, D.S. ; IBM T.J. Watson Res. Center, Yorktown Heights, NY ; Verscheure, O. ; Chaudhari, Upendra V. ; Amini, L.D.

Networks of classifiers are capturing the attention of system and algorithmic researchers because they offer improved accuracy over single model classifiers, can be distributed over a network of servers for improved scalability, and can be adapted to available system resources. This work provides a principled approach for the optimized allocation of system resources across a networked chain of classifiers. We begin with an illustrative example of how complex classification tasks can be decomposed into a network of binary classifiers. We formally define a global performance metric by recursively collapsing the chain of classifiers into one combined classifier. The performance metric trades off the end-to-end probabilities of detection and false alarm, both of which depend on the resources allocated to each individual classifier. We formulate the optimization problem and present optimal resource allocation results for both simulated and state-of-the-art classifier chains operating on telephony data.

Published in:

Data Mining, 2006. ICDM '06. Sixth International Conference on

Date of Conference:

18-22 Dec. 2006