By Topic

Cluster Analysis of Time-Series Medical Data Based on the Trajectory Representation and Multiscale Comparison Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shoji Hirano ; Shimane University, Japan ; Shusaku Tsumoto

This paper presents a cluster analysis method for multidimensional time-series data on clinical laboratory examinations. Our method represents the time series of test results as trajectories in multidimensional space, and compares their structural similarity by using the multiscale comparison technique. It enables us to find the part-to-part correspondences between two trajectories, taking into account the relationships between different tests. The resultant dissimilarity can be further used with clustering algorithms for finding the groups of similar cases. The method was applied to the cluster analysis of Albumin-Platelet data in the chronic hepatitis dataset. The results denonstrated that it could form interesting groups of cases that have high correspondence to the fibrotic stages.

Published in:

Sixth International Conference on Data Mining (ICDM'06)

Date of Conference:

18-22 Dec. 2006