By Topic

Dirichlet Aspect Weighting: A Generalized EM Algorithm for Integrating External Data Fields with Semantically Structured Queries by Using Gradient Projection Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Atulya Velivelli ; University of Illinois at Urbana-Champaign, USA ; Thomas S. Huang

In this paper we address the problem of document retrieval with semantically structured queries - queries where each term has a tagged field label. We introduce Dirichlet Aspect Weighting model which integrates terms from external databases into the query language model in a bayesian learning framework. For this model, the Dirichlet prior distribution is governed by parameters which depend on the number of fields in the external databases. This model needs additional examples to be augmented to the semantically structured query. These examples are obtained using pseudo relevance feedback. We formulate a loglikelihood function for the Dirichlet Aspect Weighting model and maximize it using a novel Generalized EM algorithm. Comparison of the results of Dirichlet Aspect Weighting model on TREC 2005 Genomics Track dataset with baseline methods using pseudo relevance feedback, while incorporating terms from external databases shows an improvement.

Published in:

Sixth International Conference on Data Mining (ICDM'06)

Date of Conference:

18-22 Dec. 2006