By Topic

An Efficient Reference-Based Approach to Outlier Detection in Large Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yaling Pei ; Dept. of Comput. Sci., Alberta Univ., Edmonton, AB ; Zaiane, O.R. ; Yong Gao

A bottleneck to detecting distance and density based outliers is that a nearest-neighbor search is required for each of the data points, resulting in a quadratic number of pairwise distance evaluations. In this paper, we propose a new method that uses the relative degree of density with respect to a fixed set of reference points to approximate the degree of density defined in terms of nearest neighbors of a data point. The running time of our algorithm based on this approximation is 0(Rn log n) where n is the size of dataset and R is the number of reference points. Candidate outliers are ranked based on the outlier score assigned to each data point. Theoretical analysis and empirical studies show that our method is effective, efficient, and highly scalable to very large datasets.

Published in:

Data Mining, 2006. ICDM '06. Sixth International Conference on

Date of Conference:

18-22 Dec. 2006