By Topic

Applying Data Mining to Pseudo-Relevance Feedback for High Performance Text Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, we investigate the use of data mining, in particular the text classification and co-training techniques, to identify more relevant passages based on a small set of labeled passages obtained from the blind feedback of a retrieval system. The data mining results are used to expand query terms and to re-estimate some of the parameters used in a probabilistic weighting function. We evaluate the data mining based feedback method on the TREC HARD data set. The results show that data mining can be successfully applied to improve the text retrieval performance. We report our experimental findings in detail.

Published in:

Sixth International Conference on Data Mining (ICDM'06)

Date of Conference:

18-22 Dec. 2006