By Topic

Efficient Calculation of Interior Scattering From Large Three-Dimensional PEC Cavities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fu-Gang Hu ; Temasek Labs., Nat. Univ. of Singapore ; Chao-Fu Wang ; Yeow-Beng Gan

Higher order finite element-boundary integral (FE-BI) method is a powerful tool to model the electromagnetic (EM) scattering from three-dimensional large, deep, and arbitrarily-shaped cavities. To further understand the higher order FE-BI method and its applications to the modeling of interior scattering from very large practical perfect electric conductor (PEC) cavity structures, two aspects will be discussed in this paper. The first is on the development of a new integration method to accurately handle singular integrals in calculating BI matrix elements resulted from higher order basis functions defined on higher order elements. The second is on the numerical and experimental verifications of the higher order FE-BI code developed and its applications to the study of the effects of cavity shape, termination and aperture coupling on the interior scattering from large PEC cavities

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 1 )