By Topic

A Tunable Via-Patch Loaded PIFA With Size Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi Yuk Chiu ; Wireless Commun. Res. Center, City Univ. of Hong Kong ; Karn Man Shum ; Chi Hou Chan

A novel tunable planar inverted-F antenna (PIFA) is described. A via-patch is introduced under the main radiating element to create a capacitive coupling effect and lower the operating frequency. The antenna size is reduced by half when compared to the conventional PIFA. Incorporating with an L-shaped opening on the ground plane, the proposed via-patch loaded PIFA exhibits a 10-dB return-loss bandwidth of 8.91% for 2.4 GHz ISM band applications. In the proposed approach, the capacitive patch is connected to the ground through a via while a coaxial feed is directly connected to the radiating element. This is different from other capacitive-loading, size-reduction schemes in which the capacitive patch is connected to the coaxial feed, thus not able to provide frequency tuning. By simply replacing the via in our antenna with a screw and adjusting the height of the via-patch by turning the screw, a tuning range of 0.8 GHz from 2.5-3.3 GHz can be achieved. This makes the proposed PIFA a convenient tunable small antenna. Both simulation and measurement results are presented together with parametric studies on the via-patch and L-shaped opening ground plane

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 1 )