By Topic

Accurate Loop Self Inductance Bound for Efficient Inductance Screening

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mondal, M. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX ; Massoud, Y.

An analytical model for the upper bound of loop self inductance has been developed that is applicable to a wide range of layout geometries commonly encountered in high performance integrated circuits. We demonstrate that the existing analytical models can significantly underestimate the value of loop self inductance producing optimistic results. When compared with field solver results, the developed model shows an average error of 2%. A speedup of more than three orders of magnitude is obtained enabling our model to be fit for applications in inductance screening, inductance aware physical synthesis and prelayout inductance estimation

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 12 )