By Topic

Anomaly detection by auto-association

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Iversen, A. ; Intelligent Syst. Lab., Heriot-Watt Univ., Edinburgh ; Taylor, N.K. ; Brown, K.E.

Anomaly detectors (or novelty detectors) are systems for detecting behaviour that deviates from "normality ", and are useful in a wide range of surveillance, monitoring and diagnosis applications. Feed-forward auto-associative neural networks have, in several studies, shown to be effective anomaly detectors although they have a tendency to produce false negatives. Existing methods rely on anomalous examples (counter-examples) during training to prevent this problem. However, counter-examples may be hard to obtain in practical anomaly detection scenarios. We therefore propose a training scheme based on regularisation, which both reduces the problem of false negatives and also speeds up the training process, without relying on counter-examples. Experimental results on benchmark machine learning problems verify the potential of the proposed approach

Published in:

Signal Processing Symposium, 2006. NORSIG 2006. Proceedings of the 7th Nordic

Date of Conference:

June 2006