By Topic

A Simplified Method of Solving Linear and Nonlinear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Boxer ; Rome Air Development Center, Griffiths AF Base, Rome, N.Y. ; S. Thaler

A simplified method for obtaining the response of linear and nonlinear systems, without knowledge of the roots of the system characteristic equation, is described. The solutions are given as time series representing the values of the response at equally spaced instants of time. Initial conditions are introduced easily through the use of the Laplace transform. It is shown that the Laplace transform of a linear system may be approximated by a z-transform, allowing the time series to be obtained by synthetic division. Two examples for linear constant coefficient systems are worked out including the solution of a third-order system and a firstorder differential equation. The results are compared with the exact solutions obtained by analytic means. The same methods are then extended to the solution of timevarying, nonlinear, and time-lag systems. An example of each type is worked out in detail to illustrate the wide applicability of the technique. A discussion of error considerations is included.

Published in:

Proceedings of the IRE  (Volume:44 ,  Issue: 1 )