Cart (Loading....) | Create Account
Close category search window

A Model-Based Processor Design for Smart Microsensor Arrays [Applications Corner]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this article, we discuss the design of a smart-physics-based processor for microcantilever sensor arrays. The processor is coupled to a microelectromechanical sensor and estimates the presence of critical materials or chemicals in solution. We first briefly present microcantilever sensors and then discuss the microcantilever sensor array design, which consists of the cantilever physics propagation model, cantilever array measurement model, model-based parameter estimator design, and model-based processor (MBP) design. Finally, we end with experimental results and conclusions

Published in:

Signal Processing Magazine, IEEE  (Volume:24 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.