Cart (Loading....) | Create Account
Close category search window
 

Finding module-based gene networks with state-space models - Mining high-dimensional and short time-course gene expression data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yamaguchi, R. ; Biostatistics Lab., Tokyo Univ. ; Yoshida, R. ; Imoto, S. ; Higuchi, T.
more authors

This study explores some problems to analyze time-course gene expression data by state-space models (SSMs). One problem is regarding the methods of parameter estimation and determination of the dimension of the internal state variable. Although several methods have been applied, there are few literature studies which with to compare them. Thus, this paper gives a brief review of the existing literature that use the SSM to analyze the gene expression time-course data. Another problem is the identifiability of the model. If the parameters of SSMs are simply estimated without any constraints for parameter space, they lack identifiability. To identify a system uniquely, it requires a specific algorithm to estimate the parameters with some constraints. For that purpose, an identifiable form of SSMs and an algorithm for estimating parameters are derived. The last problem is the extraction of biological information by interpreting the estimated parameters, such as mechanism of gene regulations at the module level. For that one, this paper explores methods to extract further information using the estimated parameters, that is, reconstruction of a module network from time-course gene expression data

Published in:

Signal Processing Magazine, IEEE  (Volume:24 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.