By Topic

Substrate Modes of (Al,In)GaN Semiconductor Laser Diodes on SiC and GaN Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

In semiconductor laser diodes layers with high refractive index can act as parasitic waveguides and cause severe losses to the optical mode propagating in the longitudinal direction. For (Al,In)GaN laser diodes, the parasitic modes are typically caused by the SiC or GaN substrate or buffer layers, hence the name substrate modes. A set of four different experiments shows the effect of substrate modes in the near-field (the most direct evidence of substrate modes), as side lobes in far-field, oscillations of the optical gain spectra, and as dependency of threshold current on n-cladding thickness. We derive several basic properties of the substrate modes by simple estimates. For a quantitative analysis we employ a 2-D finite element electromagnetic simulation tool. We simulate periodic variations in the cavity gain spectrum that explain the measurements in terms of absolute value and oscillation amplitude. We show that it is necessary to include the refractive index dispersion in order to get the correct period of the gain oscillations. Furthermore, we use the simulations to optimize the laser diode design with respect to substrate mode losses within the constraints given, e.g., by growth conditions

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 1 )