By Topic

A Kernel Approach for Semisupervised Metric Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dit-Yan Yeung ; Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol., Kowloon ; Hong Chang

While distance function learning for supervised learning tasks has a long history, extending it to learning tasks with weaker supervisory information has only been studied recently. In particular, some methods have been proposed for semisupervised metric learning based on pairwise similarity or dissimilarity information. In this paper, we propose a kernel approach for semisupervised metric learning and present in detail two special cases of this kernel approach. The metric learning problem is thus formulated as an optimization problem for kernel learning. An attractive property of the optimization problem is that it is convex and, hence, has no local optima. While a closed-form solution exists for the first special case, the second case is solved using an iterative majorization procedure to estimate the optimal solution asymptotically. Experimental results based on both synthetic and real-world data show that this new kernel approach is promising for nonlinear metric learning

Published in:

Neural Networks, IEEE Transactions on  (Volume:18 ,  Issue: 1 )