By Topic

Integrated Support for Medical Image Analysis Methods: From Development to Clinical Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Olabarriaga, S.D. ; Informatics Inst., Amsterdam Univ. ; Snel, J.G. ; Botha, C.P. ; Belleman, R.G.

Computer-aided image analysis is becoming increasingly important to efficiently and safely handle large amounts of high-resolution images generated by advanced medical imaging devices. The development of medical image analysis (MIA) software with the required properties for clinical application, however, is difficult and labor-intensive. Such development should be supported by systems providing scalable computational capacity and storage space, as well as information management facilities. This paper describes the properties of distributed systems to support and facilitate the development, evaluation, and clinical application of MIA methods. First, the main characteristics of existing systems are presented. Then, the phases in a method's lifecycle are analyzed (development, parameter optimization, evaluation, clinical routine), identifying the types of users, tasks, and related computational issues. A scenario is described where all tasks are performed with the aid of computational tools integrated into an ideal supporting environment. The requirements for this environment are described, proposing a grid-oriented paradigm that emphasizes virtual collaboration among users, pieces of software, and devices distributed among geographically dispersed healthcare, research, and development enterprises. Finally, the characteristics of the existing systems are analyzed according to these requirements. The proposed requirements offer a useful framework to evaluate, compare, and improve the existing systems that support MIA development

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:11 ,  Issue: 1 )